Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 24(10): 695-713, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37280296

RESUMO

Single-cell multi-omics technologies and methods characterize cell states and activities by simultaneously integrating various single-modality omics methods that profile the transcriptome, genome, epigenome, epitranscriptome, proteome, metabolome and other (emerging) omics. Collectively, these methods are revolutionizing molecular cell biology research. In this comprehensive Review, we discuss established multi-omics technologies as well as cutting-edge and state-of-the-art methods in the field. We discuss how multi-omics technologies have been adapted and improved over the past decade using a framework characterized by optimization of throughput and resolution, modality integration, uniqueness and accuracy, and we also discuss multi-omics limitations. We highlight the impact that single-cell multi-omics technologies have had in cell lineage tracing, tissue-specific and cell-specific atlas production, tumour immunology and cancer genetics, and in mapping of cellular spatial information in fundamental and translational research. Finally, we discuss bioinformatics tools that have been developed to link different omics modalities and elucidate functionality through the use of better mathematical modelling and computational methods.


Assuntos
Biologia Computacional , Multiômica , Linhagem da Célula , Epigenoma , Metaboloma
2.
J Exp Med ; 220(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976164

RESUMO

"γc" cytokines are a family whose receptors share a "common-gamma-chain" signaling moiety, and play central roles in differentiation, homeostasis, and communications of all immunocyte lineages. As a resource to better understand their range and specificity of action, we profiled by RNAseq the immediate-early responses to the main γc cytokines across all immunocyte lineages. The results reveal an unprecedented landscape: broader, with extensive overlap between cytokines (one cytokine doing in one cell what another does elsewhere) and essentially no effects unique to any one cytokine. Responses include a major downregulation component and a broad Myc-controlled resetting of biosynthetic and metabolic pathways. Various mechanisms appear involved: fast transcriptional activation, chromatin remodeling, and mRNA destabilization. Other surprises were uncovered: IL2 effects in mast cells, shifts between follicular and marginal zone B cells, paradoxical and cell-specific cross-talk between interferon and γc signatures, or an NKT-like program induced by IL21 in CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Citocinas , Transdução de Sinais , Diferenciação Celular
4.
Sci Adv ; 8(23): eabj2820, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675405

RESUMO

A notable number of acute lymphoblastic leukemia (ALL) patients develop CD19-positive relapse within 1 year after receiving chimeric antigen receptor (CAR) T cell therapy. It remains unclear if the long-term response is associated with the characteristics of CAR T cells in infusion products, hindering the identification of biomarkers to predict therapeutic outcomes. Here, we present 101,326 single-cell transcriptomes and surface protein landscape from the infusion products of 12 ALL patients. We observed substantial heterogeneity in the antigen-specific activation states, among which a deficiency of T helper 2 function was associated with CD19-positive relapse compared with durable responders (remission, >54 months). Proteomic data revealed that the frequency of early memory T cells, rather than activation or coinhibitory signatures, could distinguish the relapse. These findings were corroborated by independent functional profiling of 49 patients, and an integrative model was developed to predict the response. Our data unveil the molecular mechanisms that may inform strategies to boost specific T cell function to maintain long-term remission.


Assuntos
Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19 , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteômica , Receptores de Antígenos Quiméricos/metabolismo , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...